Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness.
نویسندگان
چکیده
By employing transcranial magnetic stimulation (TMS) in combination with high-density electroencephalography (EEG), we recently reported that cortical effective connectivity is disrupted during early non-rapid eye movement (NREM) sleep. This is a time when subjects, if awakened, may report little or no conscious content. We hypothesized that a similar breakdown of cortical effective connectivity may underlie loss of consciousness (LOC) induced by pharmacologic agents. Here, we tested this hypothesis by comparing EEG responses to TMS during wakefulness and LOC induced by the benzodiazepine midazolam. Unlike spontaneous sleep states, a subject's level of vigilance can be monitored repeatedly during pharmacological LOC. We found that, unlike during wakefulness, wherein TMS triggered responses in multiple cortical areas lasting for >300 ms, during midazolam-induced LOC, TMS-evoked activity was local and of shorter duration. Furthermore, a measure of the propagation of evoked cortical currents (significant current scattering, SCS) could reliably discriminate between consciousness and LOC. These results resemble those observed in early NREM sleep and suggest that a breakdown of cortical effective connectivity may be a common feature of conditions characterized by LOC. Moreover, these results suggest that it might be possible to use TMS-EEG to assess consciousness during anesthesia and in pathological conditions, such as coma, vegetative state, and minimally conscious state.
منابع مشابه
Testing Proposed Neuronal Models of Effective Connectivity Within the Cortico-basal Ganglia-thalamo-cortical Loop During Loss of Consciousness.
In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of ea...
متن کاملBreakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness.
BACKGROUND Mechanisms of anesthesia-induced loss of consciousness remain poorly understood. Resting-state functional magnetic resonance imaging allows investigating whole-brain connectivity changes during pharmacological modulation of the level of consciousness. METHODS Low-frequency spontaneous blood oxygen level-dependent fluctuations were measured in 19 healthy volunteers during wakefulnes...
متن کاملSpatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness.
Applying graph theoretical analysis of spontaneous BOLD fluctuations in functional magnetic resonance imaging (fMRI), we investigated whole-brain functional connectivity of 11 healthy volunteers during wakefulness and propofol-induced loss of consciousness (PI-LOC). After extraction of regional fMRI time series from 110 cortical and subcortical regions, we applied a maximum overlap discrete wav...
متن کاملFronto-Parietal Connectivity Is a Non-Static Phenomenon with Characteristic Changes during Unconsciousness
BACKGROUND It has been previously shown that loss of consciousness is associated with a breakdown of dominating fronto-parietal feedback connectivity as assessed by electroencephalogram (EEG) recordings. Structure and strength of network connectivity may change over time. Aim of the current study is to investigate cortico-cortical connectivity at different time intervals during consciousness an...
متن کاملBreakdown of cortical effective connectivity during sleep.
When we fall asleep, consciousness fades yet the brain remains active. Why is this so? To investigate whether changes in cortical information transmission play a role, we used transcranial magnetic stimulation together with high-density electroencephalography and asked how the activation of one cortical area (the premotor area) is transmitted to the rest of the brain. During quiet wakefulness, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 6 شماره
صفحات -
تاریخ انتشار 2010